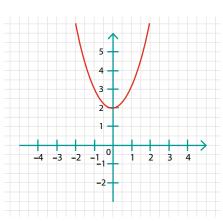
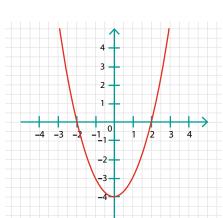
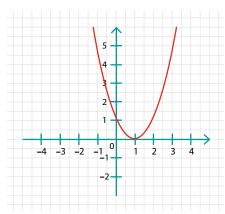
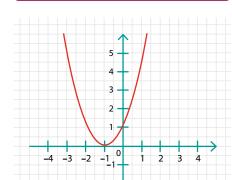
MATEMÁTICA 3 - FUNCIONES CUADRÁTICAS

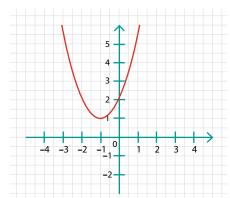
Cómo puedes extraer el recorrido de la función, solamente teniendo la expresión analítica y no la repentación gráfica, en casos como el del ítem anterior? ealiza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$	aliza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$												
entación gráfica, en casos como el del ítem anterior? ealiza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$	aliza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$												
ealiza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$	Aliza el EA y RG de la siguiente función: $g(x) = 3x - 9x^2$					e tenie	endo la	expre	esión	analít	ica y ı	no la	repre
		Realiza el EA y RG de	la siguiente fun	ción: <i>g</i> (<i>x</i>) = 3 <i>x</i>	- 9 <i>x</i> ²								

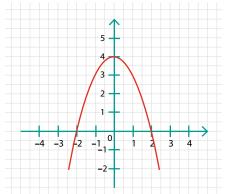

4. Dadas las siguientes funciones: $f(x) = \frac{1}{2}x^2 - x - 4$ y g(x) = 2x + 6 (Debes tener en cuenta que f(x) es una función de segundo grado y g(x) es de primer grado. El objetivo de la actividad es comparar cómo se procede en cada caso).

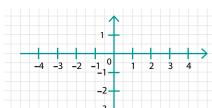

- a. Estudia:
 - ★ El corte con el eje de las ordenadas.
 - ★ La/s raíz/ces.
 - * La ecuación del eje de simetría, si corresponde.
 - ★ Las coordenadas del máximo o el mínimo, según corresponda, si la función lo requiere.
- b. Represéntalas gráficamente en sistemas de ejes diferentes.

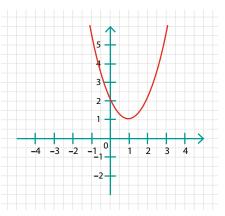

- **c.** Completa las frases:
 - * La función f crece para los valores de x _____; esto es, en el intervalo (__; + ∞).

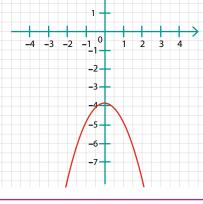

 * La función f decrece para los valores de x _____; o sea, en el intervalo ($-\infty$; ___).


 - \star La función g es _____ (creciente o decreciente).
- 5. Vincula cada una de las expresiones analíticas de las funciones cuadráticas con el gráfico correspondiente:









$$a(x) = x^2 + 2$$

$$b(x) = x^2 - 4$$

$$c(x) = -x^2 + 4$$

$$d(x) = -x^2 - 4$$

$$e(x) = (x-1)^2$$

$$f(x) = (x+1)^2$$

$$g(x) = (x-1)^2 + 1$$

$$h(x) = (x-1)^2 - 1$$

6. Estudia estas funciones cuadráticas y construye sus gráficos:

$$f:f(x) = (x+2)^2 - 9$$

$$g:g(x) = -2x(x+4)$$

$$h:h(x) = (x+3)(x-3)$$

	f(x)	g(x)	h(x)
Corte con Oy			
Raíces o ceros			
Ecuación del eje de simetría			
Máximo o mínimo			
Vértice			
Intervalo de crecimiento			
Intervalo de decrecimiento			
Estudio del signo de las imágenes			